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Abstract: This paper introduces a generic distributed prognostic health management 

(PHM) architecture with specific application to the electrical power systems domain. 

Current state-of-the-art PHM systems are mostly centralized in nature, where all the 

processing is reliant on a single processor. This can lead to loss of functionality in case of 

a crash of the central processor or monitor. Furthermore, with increases in the volume of 

sensor data as well as the complexity of algorithms, traditional centralized systems 

become unsuitable for successful deployment, and efficient distributed architectures are 

required. A distributed architecture though, is not effective unless there is an algorithmic 

framework to take advantage of its unique abilities. The health management paradigm 

envisaged here incorporates a heterogeneous set of system components monitored by a 

varied suite of sensors and a particle filtering (PF) framework that has the power and the 

flexibility to adapt to the different diagnostic and prognostic needs. Both the diagnostic 

and prognostic tasks are formulated as a particle filtering problem in order to explicitly 

represent and manage uncertainties; however, typically the complexity of the prognostic 

routine is higher than the computational power of one computational element (CE). 

Individual CEs run diagnostic routines until the system variable being monitored crosses 

beyond a nominal threshold, upon which it coordinates with other networked CEs to run 

the prognostic routine in a distributed fashion. Implementation results from a network of 

distributed embedded devices monitoring a prototypical aircraft electrical power system 

are presented, where the CEs are Sun Microsystems Small Programmable Object 

Technology (SPOT) devices. 
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I. INTRODUCTION 

Distributed diagnostics and prognostics is the next step in the evolution of health 

management systems as expectations of health update frequency, system coverage and 

prediction accuracy increase. The most common architecture for health management 

systems – due to ease of development – is centralized i.e., a central processing device 



collects data from sensors and processes them, while executing various diagnostic and 

prognostic algorithms. However, such a system architecture, where all or most of the 

processing is reliant on a single processor, is prone to various problems; the most serious 

being vulnerability to complete loss of functionality in case of a crash of the central 

computing element. Furthermore, with increase in amount of sensor data as well as the 

complexity of algorithms, traditional centralized systems become unsuitable for 

successful deployment and efficient distributed architectures are required.  

A distributed architecture though, is not effective unless there is an algorithmic 

framework to take advantage of its unique abilities. The health management paradigm 

envisaged here incorporates a heterogeneous set of system components monitored by a 

varied suite of sensors and a particle filtering (PF) framework that has the power and the 

flexibility to adapt to the different diagnostic and prognostic needs. The application 

domain for this research is an experimental setup simulating a prototypical aircraft 

electrical power system. The system components under test include power electronic 

devices and lithium-ion batteries. Sun Microsystems Small Programmable Object 

Technology (SPOT) devices are used for embedded sensing as well as computing. Each 

system component is monitored by a single Sun SPOT device that takes voltage, current 

and temperature measurements as appropriate and runs the diagnostic routine on the 

collected data. Once a fault is detected the SPOT device in question switches over to the 

prognostic routine where it enlists the help of other available SPOT devices to set up a 

distributed wireless network in order to share the prognostic computational load.  

Both the diagnostic and prognostic tasks are formulated as a particle filtering problem in 

order to explicitly represent and manage the uncertainties inherent to the PHM domain. 

Such uncertainties could result from various sources like insufficient system model 

fidelity, sensor noise or unanticipated operating conditions. The diagnostic system model 

is a simple low order formulation that allows the limited computation power of a single 

SPOT device to track the measured variable indicative of component health and trigger 

the prognostic routine when certain predetermined thresholds are crossed. The prognostic 

model is more complex in order to handle the increased uncertainty of health prediction 

and hence load sharing over the distributed network is required to obtain real-time results. 

The cooperating SPOT devices multi-task to carry out individual diagnostic duties along 

with distributed prognostic tasks and maximize the overall health management system 

efficiency. Thus, the overall system involves complex run-time scheduling and decision-

making. The results discuss the prediction accuracy and precision of the prognostic 

routine and the computational performance gains of the distributed architecture over 

classical centralized schemes. 

II. BACKGROUND 

Research into systems health management has traditionally been spearheaded by the 

manufacturing, power generation and military systems community. Rotating machinery 

were the first implementation platforms for these technologies, since downtime or 

breakdown incurred significant costs, both in terms of economic viability and resource 

availability. Forays into the world of electrical and electronic devices are more recent. 

Even so, most of the body of work available addresses the issue of diagnostics – fault 

detection, identification and isolation. The field of prognostics is still very much nascent, 



although with the advent of the Condition-based Maintenance (CBM) paradigm, the 

emphasis on failure prediction and prevention has increased. 

Early efforts in machinery diagnostics were mostly data-driven techniques applied to 

vibration data [1], [2]. Integrated diagnostics and prognostics approaches have emerged 

in recent years. In [3] the authors discuss such a methodology using statistical prognostic 

models. They also emphasize the need for a physics-of-failure based approach to improve 

the reliability of prognostics. A reasoning engine for distributed multi-algorithm 

diagnostics and prognostics is presented in [4]. Distributed data mining tools like DAME 

[5] and BROADEN [6] have also been developed for aircraft engine health management 

applications. 

Looking at the health management problem from the systems perspective, the authors in 

[7] present a distributed prognostics architecture where tasks, like identifying the 

different system modules and determining where they fit into a given system using 

prognostics, are distributed at the algorithm level. A distributed network of smart sensor 

elements integrated using a knowledge-driven environment is presented in [8], which 

participates in a hierarchy of health determination at sensor, process, and system levels. A 

hardware multi-cellular sensing and communication network (a smart “skin”) for health 

management of “ageless” aerospace vehicles (AAVs) is presented in [9]. The objective is 

to detect and self-heal from impacts caused by projectiles like micro-meteoroids or space 

debris. 

From the algorithms perspective, some prognostic techniques – such as particle filters – 

have been investigated from a distributed implementation context. Three different 

distributed implementations for particle filtering are presented in [10]. A parallel particle 

filter implementation on a shared-memory multiprocessor cluster is discussed in [11]. 

The issue of resampling in distributed particle filter architectures has been discussed in 

[12]. Distributed particle filters for sensor networks [13] and tracking applications [14] 

have also been explored in recent times. Communication issues are most often the highest 

contributor to resource management costs for generic distributed networks. Specifically, 

for wireless networks communication overhead can be higher by orders of magnitude as 

compared to other factors.  As a mitigation strategy, an approximate dynamic 

programming approach that integrates the value of information and the cost of 

transmitting data over a rolling time horizon is presented in [15].  However, the above 

technique is specific to the context of object tracking with a distributed sensor network 

and may not be easily extended to other domains. In [16] the authors investigate the role 

of network topology in improving communication overheads. The problem of minimizing 

communication in general distributed systems is considered in a discrete-event formalism 

in [17], where the system is modeled as a finite-state automaton.  

From the literature review presented above, it can be inferred that there are several 

challenges to designing an efficient distributed health management architecture. It must 

be flexible enough to be able to monitor a variety of subsystems using heterogeneous 

implementation platforms while balancing the trade-offs among computational 

performance, resource requirements and communication overheads. The following 

sections describe a distributed PHM architecture that addresses these issues while using 



particle filters as the underlying algorithm. A subset of this work concerning only the 

distributed prognostics aspect was presented at the International Conference on 

Prognostics and Health Management 2008 (PHM 2008) [18]. 

III. DISTRIBUTED PHM ARCHITECTURE 
At the heart of the distributed PHM architecture is a network of smart sensor devices. 

These devices monitor the health of various subsystems or modules i.e., they perform 

diagnostics operations and trigger prognostics operations based on user defined 

thresholds and rules. An example of such a distributed prognostics system is shown in 

Figure 1. The sensor devices which we call computing elements (CEs) consist of a sensor 

or a set of sensors and a communication device i.e., a wireless transreceiver or wired 

communication capabilities besides an embedded processing element. In this paper we 

focus on wirelessly connected devices for enhanced flexibility. However, for many 

systems, wired connections may be preferred in order to overcome communication 

overheads associated with wireless systems.  

 

Figure 1 – Overview of distributed prognostics system architecture. Note that all the CEs 

may not have wireless connectivity. (Adapted from Figure 1 in [18]). 

There are two main operating modes for a CE: diagnostics and prognostics [18]. A CE 

runs in the default mode of diagnostics where it monitors a given sub-system or 

component through a low weight diagnostic algorithm. During this monitoring if a CE 

detects a critical condition, it raises a flag. Depending on the current state (i.e., 

availability of resources) it either switches to prognostics mode or informs the base 

station of the prognostic task. Thus, in the prognostics mode it is not necessary that all 

CEs collaborate; some of them may lack enough computing power to support the 

additional new task. Note that the diagnostics operations continue in the prognostics 



mode. To ensure that a participating CE can support such multi-tasking efficiently the 

prognostics algorithms need to be distributed efficiently.  

• All CEs running 

Diagnostic routines

• CE reports fault 

• Prognostics mode triggered

• Base Station sets up 

Prognostics network
• Participating CEscontinue 
to run Diagnostics

• Fault reporting CE runs Prognostics

• Participating CEs run Diagnostics & Prognostics
• Remaining CEs continue to run Diagnostics

M
A

IN
T

E
N

A
N

C
E

 A
C

T
IO

N

F
A

U
L

T
 P

R
O

G
R

E
S

S
IO

N

 

Figure 2 – Flow diagram for diagnostics and prognostics operations in the distributed 

architecture. 

In many cases the sensor capabilities of the CEs may not be utilized, i.e., they could act 

as monitors for the rest of the system – schedule tasks, detect failures and initiate 
recovery, provide access to resources such as an external database etc. These CEs are 

specially designated as base stations. The base station is also, typically, connected to a 

more power computing resource such as a laptop which aids in collection and storage of 

system data. 

Figure 2 shows, in detail, the typical execution flow in our health management 

architecture. As mentioned earlier, each CE monitors different components or subsystems 

such as battery health, actuator faults, health of electronic components and so on. It can 

also be responsible for diagnostic monitoring of a sub-system comprising of multiple 

components. In most cases the raw data collected is refined using diagnostics algorithms 

and only a summary is reported to the base station. But, in many cases, when the CE does 

not have enough computing power – for example in order to support heavy sampling rate 

of data collection – it can periodically send packets of raw data which may be used for 

offline analysis. Such a case is illustrated in our implemented architecture.  



The base station monitors all the remaining CEs and coordinates tasks. The base station 

also maintains information regarding CE resource availability. Note that during 

prognostics, it is not necessary that the base station will coordinate all the tasks and 

another local leader/server may be chosen. The CEs involved in the prognostics operation 

would perform more efficiently if they are physically near to each other in a wireless 

environment and hence it is imperative that the base station is physically near to the rest 

of the CEs as well. Thus, in case the base station is far away from the collaborating CEs, 

a different leader is selected.  

Implemented Architecture: In the system considered in this paper, two free ranging 

CEs (CE1 and CE2) are involved in addition to the base station, which also performs 

diagnostics on battery health data from an offline source. This scenario reflects the case 

when a base station has to aid some other CE in computation and illustrates the heavy 

multi-tasking involved in such a health management architecture. After startup of the 

system, during initialization, the base station communicates with remote CEs to gather 

information regarding available resources. Individual diagnostics routines are initiated by 

all the devices: CE1 monitors temperature of an IGBT, CE2 monitors temperature of a set 

of Lithium ion batteries and the base station runs offline diagnostics for battery based on 

current and voltage information. Further details of the diagnostic system are provided in 

Section V.  

In our system, prognostics is triggered by the base station after it detects an anomaly. 

Based on resource information, it selects one of the CEs (say CE1) to collaborate in 

prognostics on battery health data. It allocates task share to this CE and starts as well as 

acts as a leader for the prognostics routine. CE1 now performs the prognostics sub-task in 

addition to its diagnostics task. The remaining free ranging CE (CE2) continues its 

diagnostic operation. The base station now performs only its share of the prognostics task 

and scheduling and oversight of the prognostics task besides collection of diagnostics 

data from the two CEs. Once the required maintenance has been performed and the 

prognostics task is over the base station informs CE1, which then returns to its 

diagnostics mode. 

The Implementation Platform: The basic computational element of our implementation 

platform is the Sun Microsystems SPOT device. A free range Sun SPOT is a small, 

wireless, battery powered experimental platform built by stacking a Sun SPOT processor 

board with a sensor board and battery as shown in Figure 3. The smaller base station Sun 

SPOT consists of just the processor board in a plastic housing. In terms of processing 

power, each Sun SPOT has a 180MHz 32-bit ARM920T core processor with 512K RAM 

and 4M Flash. The Sun SPOTs communicate using radio channels. The processor board 

has a 2.4GHz radio with an integrated antenna on the board. The radio is a TI CC2420 

(formerly ChipCon) and is IEEE 802.15.4 compliant. Each processor board has a USB 

interface (used to connect to a PC). Each free ranging SPOT runs off a 3.7 V 

rechargeable, 750 mAh Lithium-ion battery, while power management is carried out 

using a Atmel Atmega88 microcontroller. The base station SPOT does not have a battery, 

instead drawing power via the USB connection to the host PC. In our implementation, the 

free ranging SPOT act as CE while the SPOT base station acts as the default base station. 



 

Figure 3 – Anatomy of a free ranging Sun SPOT device (courtesy of 

www.sunspotworld.com). 

IV. PARTICLE FILTERS 
In terms of the software program running on the above described architecture, we focus 

on a single-class of algorithms – particle filters. PF methods [19] are essentially Bayesian 

learning schemes that model the state equations as a first order Markov process with the 

outputs being conditionally independent. This has the advantage of making the next state 

prediction dependent only on the current state and the current measurement, which 

translates to lower memory and communication requirements than a Monte Carlo 

approach. PF methods are capable of identifying model parameters simultaneously with 

state estimation, thus tuning the system model to fault progression, making it superior to 

Kalman filters for health management approaches. 
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Figure 4 – Particle filter flow chart. 



PFs approximates the state probability distribution (pdf) with a set of particles, xk, 

representing sampled values from the unknown state space, and their associated weights, 

wk, denoting discrete probability masses. Figure 4 shows a simplified flow chart for the 

PF algorithm. The particles are generated and recursively updated in two steps for each 

iteration of the filter – an intermediate estimate is generated from a stochastic nonlinear 

process model that describes the evolution in time of the system under analysis, which is 

then updated using the likelihood of the current measurement, zk, to produce the posterior 

state pdf. As the filter iterates and gets closer to the true state value, most of the particles 

weight degenerate, i.e. become negligible. Then, in order to prevent wasting 

computational resources on unimportant particles, resampling is carried out to generate a 

new population of particles concentrated around the more important ones of the old 

population. Details about this methodology are provided in [18].  

V. DIAGNOSTICS 

The diagnostic routine can be broken down into two parts – sensing and data analysis. 

For the prototypical aircraft electrical power system (EPS) under consideration, we look 

at a set of heterogeneous components, namely power semiconductor devices and 

batteries. Power semiconductors like Insulated-Gate Bipolar Transistor (IGBT) form the 

core of most electric power systems because of their high efficiency and fast switching 

speeds. However, due to high thermal and electrical stresses IGBTs undergo accelerated 

aging as compared to other electronic components that are part of the electrical power 

system. On aircrafts, batteries are mostly used for starting the engines and supply back up 

power to electrical loads (e.g. landing gear actuation, air conditioning etc.), while being 

charged as the engines run. However, it is still important to know the state-of-charge 

(SOC) and state-of-life (SOL) of the batteries for reliable operation, since their failure 

could impair operation of crucial systems leading to catastrophic consequences. 

Moreover, with the increasing role of electric UAVs in the future, batteries are going to 

be even more critical to overall system functionality.  

As mentioned before our set up consists of 2 SPOTs connected over a wireless network 

to a base station that is linked to the host PC. One of these SPOTs monitors the 

temperature of an IGBT as it undergoes repeated switching at elevated temperatures until 

loss of functionality due to thermal runaway or latch-up. The other SPOT looks at the 

temperature of a Lithium-ion rechargeable battery as it is repeatedly charged and 

discharged until it reaches a predefined end-of-life (EOL) capacity threshold (30% 

capacity fade). Figure 5 shows the temperature time series data collected by the SPOTs 

from both the IGBT and the Lithium-ion battery. Since run-to-failure experiments with 

these EPS components take considerable amount of time (more than the battery life of the 

free ranging SPOTs), pre-recorded battery aging data is fed to the monitoring SPOTs 

through the base station in order to show proof of concept of the integrated PF-based 

diagnostics-prognostics framework. The state variables of interest are the battery 

capacity, the electrolyte resistance (RE) and the charge transfer resistance (RCT) [18]. 
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Figure 5 – Temperature data collected from EPS components (a) IGBT, and (b) battery. 

For diagnostics on offline battery aging data, the base station runs a lightweight version 

of the particle filter with only 20 particles, so as to fit within the computational and 

memory resources of a single CE. Using a low number of particles somewhat diminishes 

the ability of the PF to handle uncertainties, but since diagnostics is only concerned with 

tracking performance (1 step ahead prediction), the PF output is acceptable, as shown in 

Figure 6 (a) and (b). The tracking error for the internal impedance variables does not 

exceed 1milliohm while that for capacity drops to 10 mAh within 3 iterations. The 

diagnostic routine is run until the battery capacity as estimated by the base station crosses 

the 5% fade threshold, shown in Figure 6 (b), after which the prognostic routine is 

triggered. The state estimates at this trigger point serve as the starting population for the 

prognostics PF algorithm. 
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(a)                                                                   (b) 

Figure 6 – PF state tracking for diagnostics and state prediction during prognostics from 

32 weeks onward for - (a) internal impedances RE, RCT, and (b) battery capacity. 



VI. PROGNOSTICS 
For the prognostic routine we need to make long-term predictions over several weeks and 

hence, we need more particles in the PF implementation to manage the uncertainty 

bounds. However, when the number of particles is stepped up to 100, the computational 

and memory resources available in a single CE is insufficient to handle the load. The 

base station then communicates with one of the CEs requesting help to set up a 

distributed computational network. These 2 nodes then execute the prognostic PF while 

working with 50 particles each. The distributed architecture takes advantage of the fact 

that there are no data dependencies during model-based particle propagation and the 

weight updates. These portions of the PF algorithm as easily parallelized, while only the 

resampling part is serial in nature. In our setup, the base station performs the resampling 

and particle routing, as well as overall control. More details about the execution steps can 

be found in [18].  

Figure 6 (a) and (b) show the predicted trajectories of RE, RCT and battery capacity from 

32 weeks onward. Although, by this point we have seen only half the life of the battery, 

the predictions are fairly accurate due to the ability of the PF to adapt the system aging 

model during the diagnostic routine. Furthermore, the PF does not simply provide the 

mean prediction trajectories, but also the predicted state pdf. This distribution may be 

compared against the EOL threshold (30% capacity fade, i.e. a battery capacity of 0.7 

Ah) to generate the remaining useful life (RUL) pdf. Figure 7 shows how the PF 

prognosis improves in both accuracy and precision (narrowness of the pdf) from 32 

weeks to 48 weeks as more data is made available before prediction. 
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Figure 7 – Distributed PF prediction at 32 and 48 weeks. 



VII. COMPUTATIONAL PERFORMANCE 
The execution time profiles (averaged over multiple separate executions of the whole 

system) for prediction after 32 weeks and prediction after 48 weeks are shown in Figure 

8. An average was taken since the execution time varies – within a margin of 10-15 ms – 

mainly based on the wireless communication time which is dependent on the distance 

between the CEs. The comparison shows the significant decrease in execution time when 

two CEs are used for prognostics, which is expected since the computation intensive load 

is now distributed. The inclusion of diagnostics task adds a minor overhead to the 

performance.  
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Figure 8 – Execution time comparison for health management system. 

The memory usage of the CE1, CE2 and the base station are 29 KB, 28 KB and 25 KB 

respectively. Note that the CEs i.e., remote SPOTs execute using a virtual machine which 

contributes to additional memory use. The static program memory usage of one of the 

SPOT devices is illustrated in Figure 9. The memory usage reflects that most of the 

application memory is unused and further multi-tasking is possible thereby facilitating 

the scope for design of more complex health management system. 
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Figure 9 – Typical memory usage profile for a SPOT device. 



VIII. CONCLUSION 
This paper presents a distributed system health management architecture that handles 

diagnostics as well as prognostics operations in a collaborative manner. It builds on 

recent advances in smart sensor devices to distribute macro and micro level tasks, for 

better performance and resource utilization. The distributed prognostics part was 

highlighted in [18]. In this paper, a proof-of-concept demonstration of the architecture 

with the diagnostics workload thoroughly integrated has been presented which resulted in 

a heavily multi-tasking system. Experiments with monitoring a small heterogeneous set 

of EPS components to evaluate the effects on performance and resource (memory) 

utilization have been presented. Analysis of the results show that such a distributed 

architecture results in a highly efficient system (low execution time and static memory 

usage) that is capable of supporting complex functionalities like PF based diagnostics and 

prognostics, while providing high throughput rate.  

The main focus of this paper has been architectural issues. However, new algorithmic 

modifications are also required to scale this system for real-time practical applications. 

Such algorithm explorations, besides investigation of more complex systems, are 

directions for future work. More analysis of architectural features such as communication 

protocols, power management, sophisticated partitioning and scheduling of tasks etc. are 

also important future research objectives. 
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